STEM Lessons for College Students

◆Divergence and Curl of a Vector | Vector Calculus | May, 2018

In this video you will understand about
What is a Divergence and curl of a vector point function.
We explain it by examples which will help you to understand the concept.

Divergence and curl of a vector :

Directional Derivative and greatest rate of increase :

Gradient of a scalar point function :

Point function :

Vector differentiation part 3 :

Vector differentiation part 2:

Vector differentiation part-1:

Functions of complex variable :

Analytic function and C-R Equations :


Fore Updates

Cube Roots of Unity :

De-Moivr’s Theorem :

De-Moivre’s Theorem Questions :

Complex number part 1:

Complex Number part 2 :

Square root of complex number :

Argument of complex number :

Questions on complex number :

Differential Equations of Order One and Degree more than one :

Linear differential Equations with constant coefficients :

Even and Odd Permutations :

Disjoint cycles:

Multiplication of Cycles :

Transposition :

Cyclic Permutation :

Inverse of Permutation :

Product of two permutations :

Identity permutation :

Permutation group:

Quotient group :

Lagrange’s theorem :

Normal Subgroup :

Cosets :

Cyclic group :

Subgroup :

Group :

Binary operation on a set :

Congruence modulo m :

Order of an element of a group :

अगर आप इस प्रकार के videos और भी देखना चाहते हैं तो इस इस चैनल को SUBSCRIBE करें। हम आपके लिए कुछ वीडियो की लिंक दे रहे हैं आप इन्हें भी देखिए।
Real Numbers (bounded and Unbounded Sets) :

Open sets :

Real Sequences :

Limit of a sequence:

Complementary functions:

Particular integral part 1:

Particular integral part 2 :

Perticular integral part 3 :

Particular integral part 4:

Homogeneous Equations with constant coefficients:

Gamma function:

Area under the curve :


Maxima and Minima:

कृपया video को पूरा देखे इससे आपको विडियो का पूरा लाभ मिल सकेगा।

आप अपने सुझाव हमे comment box में लिखकर भेज सकते हैं।
What’s up no : 8174030480
Watch videos on Facebook page :


%d bloggers like this: